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Plato’s Fractal Line:
A Solution to the Overdetermination Problem

0. Introduction

“It is like a line divided into two unequal sections.” Thus does Socrates begin one of the
most famous epistemic similes, the aptly-named Divided Line. At the conclusion of Book VI of
the Republic, Plato’s Socrates leads his interlocutor Glaucon to imagine a complex mathematical
system, to treat that system metaphorically, and to take that metaphor as explanatory of a certain
epistemology. Once Glaucon accomplishes this mental feat of strength, Socrates moves on to the
most famous epistemic simile—the Cave. If occasionally over-shadowed by the Cave, Plato’s
Divided Line remains a central representation of his epistemology. Along with Socrates and
Glaucon, the reader quickly constructs an image, sets up the metaphor, and reads off the
epistemic meaning: physical objects and opinion at the bottom, Forms and knowledge at the top.
Yet the perspicuity with which Socrates ends the passage belies the complexity of this image and
the images within it.

In an attempt to disentangle this complexity, this paper makes three claims, which
correspond to the three movements Glaucon and the reader make: [1] that the Divided Line is a
proto-fractal, [2] that a fractal line resolves the so-called overdetermination problem, and [3] that
this understanding of the line in conjunction with an analysis of the shadow metaphor used in the
passage illuminates some key aspects of Plato’s epistemology. The structure of this talk follows
this three-fold division. I begin with a short survey of the Divided Line passage and how it gives
rise to the overdetermination problem, the seeming contradiction that arises from the fact that the

middle two subsections appear to be both equal and unequal.. Having explained the
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overdetermination problem, I turn to consider what fractals are and how the Divided Line
conforms to that definition. In this second part of the paper, I suggest how understanding the line
as a fractal may resolve the apparent tensions at the center of the line. Finally, I turn to the
shadow metaphor used to describe the relationships of the subsections within the line. Here, |
argue that Plato uses the shadow as a simple image for the complex relation between the ultimate
objects of knowledge (i.e. Forms) and the objects of everyday experience. In the end, I hope to
have persuaded at least some of you that Plato believes one can and must reach beyond a shadow

of doubt to grasp some object of knowledge.

1. The Divided Line as proto-fractal

To begin this admittedly arduous journey, let us quickly recall the essentials of Socrates’
description of the Divided Line. Socrates asks Glaucon to imagine a line “divided into two
unequal sections” (509d6) and then to “divide each section ... in the same ratio as the
line” (Gomep Tolvuv ypapunv otya teTumuéVnY AdPov avico TUNHATO, TOAY TEUVE EKATEPOV TO

TUfjno dva Tov avtov Aoyov, 509d6-8). The line thus has the ratio AC is to CE as AB is to BC

and as CD is to DE (AC:CE :: AB:BC :: CD:DE or numerically 3:6 :: 1:2 :: 2:4).

—
[—

A X B () c (@ D (b) E

Moving from the purely mathematical to the allegorical, Socrates represents line section AC as
the Visible and section CE as the Intelligible. Within the Visible realm, Socrates describes

subsection AB as consisting of “shadows” and “reflections” (509¢1), while subsection BC
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consists of “the originals of these images” (510a3). Thus, in toto, the Visible realm consists of
shadows and their respective physical objects. Within the Intelligible realm, Socrates explains
that subsection CD contains “visible figures” (510d2), that is, it uses “as images the things that
were imitated before” (510b3-4). In contrast, subsection DE represents the ‘“forms
themselves” (510b9), because one proceeds in investigation “without the images used in the
previous subsection” (510b8). After this ontological exposition, Socrates explains that the four
subsections correspond to four epistemic states or “conditions in the soul” (511d):

“Understanding for the highest, thought for the second, belief for the third, and imaging for
the last. Arrange them in a ratio, and consider that each shares in clarity to the degree that the
subsection it is set over shares in truth” (511d-e).

The Divided Line thus encodes an ontology and an epistemology into its mathematical structure.

I summarize those structures as such:

Ontology:
AB - “shadows” and “reflections” (ok1dg and gavtacpota, 509¢1)

BC - “the originals of these images” (® todto £otkev, 510a3)
CD - “visible figures” (t0ig Opopévolg €idect, 510d2); “the things that were imitated
before” (toig tote punOeiov, 510b3-4).
DE - “forms themselves” (a0toic €idect, 510b9)
Epistemology:
AB - “imaging” (gikaciav, 511el)
BC - “belief” (niotiv, 511e2)
CD - “thought” (didvolav, S11e)
DE - “understanding” (vonouw, 511e)

As many commentators have noted, however, when one maps either the ontology or the
epistemology onto the mathematical structure, a contradiction arises in that the middle two

subsections appear both equal and unequal. This contradiction is commonly known as the

overdetermination problem. Commentators have long noted the necessary consequence of


http://www.perseus.tufts.edu/hopper/morph?l=w%2528%253d%257c&la=greek&can=w%2528%253d%257c0&prior=ti/qei
http://www.perseus.tufts.edu/hopper/morph?l=tou%253dto&la=greek&can=tou%253dto0&prior=w%2528=%257c
http://www.perseus.tufts.edu/hopper/morph?l=e%2529%252foiken&la=greek&can=e%2529%252foiken0&prior=tou=to
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Socrates’ description that the second and third subsections must be of equal length.! Richard
Foley provides a paradigmatic arithmetic proof:

x/y = a/b = (x+y)/(atb)
x =ay/b

a/b = ((ay/b)+y)/(a+b)
a(atb)/b = (ay/b)+y
a(at+b)/b = (ay+by)/b
a(a+tb) = y(at+b)

a=y

solve for x|

substitute for x]

multiply by (a+b)]

cross-multiply the right side]

multiply out b and extract the common y]|
divide out (a+b)]

1

Although Socrates never explicitly marks this necessary mathematic result, it forms the first horn
of our dilemma: subsections BC and CD are mathematically equal. As Socrates goes on to
explain, however, each subsection represents ascending degrees of ontological truth and
epistemic clarity (509d; 511d). As a result, the second horn of our dilemma appears: the middle
subsections must also be unequal as they represent differing degrees of truth and clarity to the
mind. Because truth, in Plato’s schema, is an ontological descriptor and clarity an epistemic
descriptor, the overdetermination problem applies separately to the ontology and the
epistemology symbolized by the line. In short, [1] subsections BC and CD are mathematically
equal, as the proof above shows; however, [2] subsections BC and CD are metaphorically
unequal, as they represent differing degrees of truth and clarity to the mind.

As Richard Foley has recently reminded scholars,? any attempt to understand the line
must come to terms with both versions of the overdetermination problem. Although much recent
work, such as that of Nicholas Smith,?> has done much to resolve this contradiction for the

ontological level of the line, Foley has demonstrated that the overdetermination problem remains

I Foley 2008, 2 provides an arithmetic proof, while Klein 1965, 119 offers a geometric version.
2 Foley, Richard. 2008. “Plato’s Undividable Line: Contradiction and Method in Republic V1.” JHP 46.1: 1-23.

3 Smith, Nicholas. 1981. “The Objects of ‘Dianoia’ in Plato’s Divided Line.” Apeiron 15.2: 129-37.
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a difficulty for the epistemological level of the line as well. Foley himself believes that this issue
“is an intentional feature of the divided line analogy,” intended to compel readers toward deeper
philosophical engagement with the text. I agree with Foley on this last point, although I hold that
this apparent contradiction in fact rests upon an equivocation, which arises from a
misunderstanding of the line as a fractal.

This leads me to my first claim, that the divided line is a proto-fractal. Before I argue for
this, however, let us briefly consider what a fractal is. In simplest terms, a fractal is a self-similar
mathematical pattern. As Kenneth Falconer puts it: a fractal “contains copies of itself at many
different scales.”* The study of fractals was pioneered by Benoit Mandelbrot some fifty years
ago.> Although fractal geometry is a modern pursuit, Mandelbrot would be the first to remind us
that fractals are as old as nature herself;® Mandelbrot offers the example of a mountain, where
each peak, hill, and rock resemble the mountain as a whole. Thus, while the category of “fractal”
did not exist for Plato, there is no reason to believe that fractal-like systems could not have been
investigated in the ancient world. I contend that the Divided Line presents precisely such an
investigation. In order to support this claim, let us consider a modern linear fractal, such as the

so-called “middle third Cantor set”:

[ad infinitum]

4 Falconer 2003, xviii
5 See Mandelbrot 1977 and Mandelbrot and Blumen 1989, 3-16.

¢ Mandelbrot, Benoit B. The Fractal Geometry of Nature. Macmillan, 1983.
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This image presents four iterations of a simple function whereby a line segment is divided
equally into 3 sub-segments and then the middle sub-segment is removed, thus producing two
new line segments. The function is then performed on these two line segments at F! to produce
four line segments at F2, and so forth and so on, ad infinitum. This example demonstrates five
essential conditions of a fractal as defined by Falconer:

[1] a fractal is self-similar; that is, F! relates to FO just as F? relates to F!,

[2] it has a fine structure, so that it retains its detail at any scale,

[3] it has a simple definition,

[4] it is obtained by a recursive procedure,

and [5] it is awkward to describe its local geometry.’

Let us turn now to the Divided Line and consider whether it meets these five criteria.

Socrates’ initial description of the mathematical structure of the line, though short,
suggest that the Divided Line highly resembles a fractal. The line clearly conforms to the first
condition, as self-similarity is the defining characteristic of the line: the division of the whole is
the same as the divisions of the parts (dva tOv avtov Adyov, 509d8). This opening description
also proves to meet condition three, as Socrates can describe the function in so few words and
the function itself is clearly no more complex than that of the middle third Cantor set. Next, by
asking Glaucon to perform two mental steps, to imagine a line divided unequally and to divided
each section by that same ratio, Socrates’ description also meets condition four. As for condition
five, the overdetermination problem itself suggests the line meets this criterion, though I shall
return to this point more fully in a bit. For now, suffice it to say that it is difficult to describe the

local geometry of the Divided Line. This leaves only the second condition. Does Plato’s Divided

Line have a fine structure, that is, does it have an infinite depth of detail? The short answer is

7 Falconer 2003, xviii. He adds, [6] “the geometry ... is not easily described in classical terms” and [7] “its size is not
quantified by the usual measures such as length,” although I find these to be sufficiently covered by [5].
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“no, but.” As found in the Republic, the line does not present a fine structure because its details
are lost after the second iteration of the function. However, the mathematical apparatus does
offer the possibility of a line that does meet this criterion. Clearly one need only continue
Socrates’ described recursive procedure ad infinitum, as in the example of the excluded middle,

to produce a full fractal:

81
DO
9 18 18 36
| | | D!
122 402 4 4 8 |2 4 4 8 |4 8 8 16
e D?
[ad infinitum]

Note that creating a divided line function with fine structure also makes the local geometry as
difficult to describe as the Cantor set, insofar as every point contains an infinite number of points
within/beneath it. In short, we can say that Plato’s Divided Line represents a proto-fractal.
Socrates establishes the mathematical apparatus for creating a fractal, but only uses this
apparatus to construct an image with two degrees of complexity. Nonetheless, using the concept
of a fractal as a heuristic device can, I argue, point us toward an answer to the overdetermination
problem.

The conceptual beauty of a fractal lies in its ability to represent geometrically that subtle

movement of the mind sensed when viewing images such as these:

£ 5%
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Rubin’s Vase Duck/Rabbit
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Optical illusions of this sort create multi-stable perception wherein our minds are able to form
two different, though stable, perceptions from a single image. Put simply, the image on the right
is both a duck and a rabbit. Similarly, in a fractal, any section represents both a source and a

derivation, or put otherwise, a whole and a part. Consider a simple tree fractal:

The first two “branches” are also simultaneously “trunks” for two of their own respective
branches. In other words, fractals create unified conceptual systems composed of some binary
relationship, whether that be wholes and parts, sources and derivations, or trunks and branches.
The defining characteristic of fractals lies in that while there is only one absolute whole, or
source, or trunk, each part that derives from it perfectly resembles that whole, if one zooms into
that level of complexity. This is precisely what it means for a fractal to be self-similar—as you
continue to zoom in, it appears that you are still looking at the whole. For example, the right-
hand side of F! in the middle third Cantor set (item three) appears identical to F°, merely smaller.
Thus, in an absolute sense, F! is a part or a derivation, but in another, contextual sense, F! is also
a source/whole. It is this consequence of the self-similarity of fractals that makes it difficult to
describe their local geometry, which simply means that it is difficult to fix and define any one
point in a fractal, given the multivalency of that point.

If Plato was indeed attempting to create a quasi-fractal, that is, a fractal with all of the

essential aspects except the fine detail of infinite iterations, then an interpreter ought to see the
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central sections as both “branches” and “trunks.” To put it more precisely, on the ontological
level, the physical objects are simultaneously the imaged objects of shadows and the imaging
objects of Forms, and on the epistemic level, they are the concrete objects of belief (niotig) and
the abstract objects of thought (61Gvowa). Below I attempt to capture this fractalized conception

of the Divided Line graphically:

D The Forms E

Shadows  Objects

[ | |
A B C

With this line there are two horizontal movements and one vertical movement: the horizontal
movements represent material changes, while the one vertical movement represents an aspectual
change. Thus, on both the line’s ontological and epistemic levels of meaning the middle two
subsections are in an absolute sense equal, but in a contextual sense they are unequal, because of

the mental shift in how that section is treated.

2. The Overdetermination Problem(s)

Armed with our understanding of the mathematical structure of the line, let us turn to
confront both the ontological and epistemic overdetermination problems head-on. First, the
ontological problem. Socrates clearly associates three of the four subsections with a class of
objects: AB (imagination) includes shadows and reflections; BC (belief), physical objects; and
DE (understanding), the Forms. CD (thought), however, the first subsection of the intelligible

realm, has been a point of much scholarly contention. Many interpreters feel that in order to
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satisfy the parallelism of Plato’s structure, the objects of thought must be intermediaries between
the Forms and the visibles, frequently dubbed simply “lower noetics”.® The intermediaries, under
this view, image the Forms just as shadows image physical objects and physical objects image
the intermediaries. As Nicholas Smith and others have recently argued, however, this
interpretation lacks full textual support.” Socrates explicitly states that the diévoia subsection
uses “as images the things that were imitated before” (510b). Thus, both subsections contain the
same stuff but the mind treats that material in different aspects.'® This recapitulates the
distinction between the horizontal and vertical movements in my re-conceived version of the
line. Although there are four parts to the line, Plato offers a tripartite ontology comprising of
shadows, objects, and Forms. In my opinion, reading the line as a fractal most clearly and
effectively makes sense of this arrangement. Foley himself concedes that such a three-class
division resolves the ontological overdetermination problem; the more sticky issue is the
epistemic problem.
At the heart of the epistemic side of the overdetermination problem lies Socrates’
concluding remarks in Book VI. Here he sums up the meaning of the divided line:
“there are four such conditions in the soul, corresponding to the four subsections of our line:
Understanding for the highest, thought for the second, belief for the third, and imaging for
the last. Arrange them in a ratio, and consider that each shares in clarity to the degree that the

subsection it is set over shares in truth”

Kol pot €l 101G TETTaPCL TUNHOCT TETTAPO TODTO TodNqHaTa £V T Wouyn yiyvoueva AoBé,
VONGV HEV €L TO AVOTAT®, S1AVOLOV O €L TG OEVTEPW, TA TPITM O TOTV ATOO0G Kol TQ

8 See Foley 2008, _ for an extensive bibliography on all those who endorse a Platonic theory of intermediates.

9

10 Smith succinctly summarizes his position thusly, “while the class of objects at the level of niotic has the same
extension as that of diévoia, the two classes have different intensions” (132).
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tedevtaie sikaciov, kai taEov adTd dvi Adyov, domep 8¢’ oic dottv dAndsiag petéyet, obtm
TavTo coenveiag nynoauevog petéyew (511d-e).

As noted earlier, truth is Socrates’ ontological criterion and clarity is his epistemic one.!' As
Foley rightly notes, the soundest interpretation of the phrase “in a ratio” identifies that ratio as
the initial mathematical ratio. But herein lies the problem—although the two middle subsections
must be equal in length, Socrates hierarchically ranks the epistemic states they represent. Thus,
to Foley, the epistemic states of mind are simultaneously equal and unequal.

A divided line fractal resolves this issue. If the linchpin for the epistemological
overdetermination problem is the shared ratio, then our mathematical solution to the ontological
problem ought to apply equally as well to the epistemic problem. Once again, we must
distinguish between an absolute and a contextual sense when considering the line’s equality. In
the absolute mathematic sense, the middle two subsections are necessarily equal, whether they
represent ontological classes or epistemic states of mind. Under my interpretation, this absolute
equality is meant to picture the fractal structure of the line as a whole. The middle subsections
must be equal to signal the hinging role physical objects play in Plato’s epistemology.

Once this absolute mathematical structure is formed, however, and the reader enters into
the line, like a prisoner in the Cave, the subsections represent unequal degrees of clarity and
truth. Context is key. This is most fully seen in the Cave, where at each level people believe they
are dealing with the ultimate objects of knowledge, whether they are cave shadows, cut-outs, or

outside shadows. At each step, the philosopher must realize the larger context within which these

11 Socrates had stated right before that “as regards truth and untruth, the division is in this proportion: As the
opinable is to the knowable, so the likeness is to the thing it is like” (510a). He clearly is treating truth as an
ontological descriptor with epistemic overtones. This foreshadows the deep connection the ontological and
epistemic levels to the line share.
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objects fall. Although both subsections are essentially equal in that they are composed of the
same class of objects, d1dvota is clearly superior insofar as our would-be philosopher here begins
to turn away from the visible, concrete world to the realm of abstraction, the realm of the Forms.
As noted earlier, while the material is the same (an absolute equality), one can see that material
in two ways (an aspectual inequality): [a] as objects of knowledge or [b] as means to knowledge.
As Plato believes the first is false, it is clearly superior to understand physical objects in the latter
sense. Hopefully, reading the line as a proto-fractal has illuminated how the Divided Line can
present these two levels of meaning. This structure merely suggests how the same class of
objects may be treated as objects of knowledge or as means to knowledge. In order to gain some
insight into why physical objects play such a central role in Plato’s epistemology, let us now
finally consider the primary metaphor Socrates uses to describe the relationships between the

various subsections, the shadow.

3. Shadows of an Epistemology

Although shadow imagery stands out more clearly in Socrates’ allegory of the Cave, the
shadow also lurks in the Divided Line. When Socrates describes the class of images that
compose the lowest subsection, he includes “shadows, then reflections in water and in all close-
packed, smooth, and shiny materials, and everything of that sort” (uév tag okidg, &meita T &v
T0ig Voaol avtdouato kol €v Toig 6oo TukvA Te Kol Aglo Kol oV GLUVESTNKEV, Kol OV TO
tolovtov, 509e-510a). The shadow then returns as Socrates attempts to describe the confusing
third subsection using an analogy with geometry: “these figures that they make and draw, of

which shadows and reflections in water are images, they now in turn use as images, in seeking to
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see those others themselves that one cannot see except by means of thought” (avta pév tavta o
mAdTToVGtV TE Kol yplpovoty, v kol okiai kai &v Bdactv eikéveg eiotv, TovToIC PV GG eikdoy
av ypoduevor, (ntodvreg 8 adtdl Ekeiva idelv & ok dv AAmG 8ot Tic §j T dovoiq, 510e-511a).
The shadow becomes the primary motif to describe the relationship between the subsections of
both the Intelligible and Visible realms. Subsections AB and CD are both related to their
counterparts as a shadow is related to its object. Thus, an analysis of the shadow motif is one key
element to understanding the epistemology of the Divided Line. Yet in order to see how the
shadow illuminates Plato’s theory of knowledge, we must first consider how exactly shadows
relate to their objects.

I suggest that shadows be defined as authentic, yet obscure representations of their
objects, but let’s unpack this a bit. Because a shadow depends for its existence on its object and
because a shadow must and can only represent that object, there is necessarily an authentic
relation between object and shadow. Put simply, if there is a shadow, then there is an object
whence it derives. Mirrors similarly produce authentic images, yet shadows uniquely produce
images that are also obscure. Unlike a reflection, a shadow is opaque; it hides much more than it
reveals. The shadow is thus both insubstantial in the ontological sense, in that it has no mass or
substance, but also obscure in an epistemological sense—it offers limited epistemic access to its
object.

The shadow motif within the Divided Line reveals the hurdles one must overcome in
one’s progression through the Line. As Socrates describes them, the physical shadows of
subsection AB represent their respective physical objects, and the intellectual shadows of

subsection CD likewise represent the Forms. Both sets of shadows share an intimate connection
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with their respective objects. The physical shadows present an authentic image of their objects,
though they are a two-dimensional representation of three-dimensional objects. Likewise, the
intellectual shadows grant true access to the Forms, though they are dependent on the visible
realm. Yet these authentic shadows are also lacking in their representations. Both sets of
shadows fail to capture their object’s essence—the physical shadows lack ontological matter, and
the intellectual shadows lack philosophic purity. In this way the shadows also obscure their
objects, failing to reveal the essence or fullness of their object. Therefore, as authentic yet
opaque representations, shadows allow Plato to picture an epistemology where knowledge is
both tenuous and attainable.

Shadows illustrate the immensely difficult epistemic task of knowing the Forms insofar
as they are opaque representations of their respective objects, yet they also exemplify the
possibility of epistemic success, as they are also authentic images. The linchpin of this
epistemology is the class of physical objects in subsections BC and CD. On the one hand, they
are the objects from which the shadows of AB derive; on the other hand, they are themselves
shadows of the objects from which they derive, the Forms. As noted earlier, these visible objects
represent both the imaged objects of shadows and the imaging objects of Forms. As a would-be
philosopher moves through the epistemic stages of the line, this duality proves essential. Having
recognized that physical shadows are merely images and seeing their imaged objects, the
philosopher understands that if there is a shadow, then there is an object and that shadow gives
some access to that object. As the philosopher begins to turn away from the visible world,
perhaps through geometry as in Socrates example, he begins to see that physical objects are

themselves intellectual shadows; they are obscure yet authentic representations of some final
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objects of knowledge. He knows now that the Forms must exist (because there is no shadow
without its object) and that he has some access to them. If physical objects were mere mirror-like
images of the Forms, the horizontal movement from thought to understanding would be fairly
easy, and both subsections of the intelligible realm would have equal clarity (and thus be of equal
length). Yet if physical objects shared nothing with the Forms, the horizontal movement from
thought to understanding would be impossible. Because visible objects relate to the Forms as a
shadow relates to its object, the attainment of true philosophical understanding is both difficult
and possible.

This picture of Plato’s epistemology may leave you with a final question: why did Plato
make this all so complicated? I believe a clue is found at the conclusion of Socrates’ epistemic
digression at 534a:

“But as for the ratio between the things these are set over and the division of either the
opinable or the intelligible section into two, let us pass them by, Glaucon, lest they involve us

in arguments many times longer than the ones we’ve already gone through.”

v & ¢’ ol Tadta dvoroyiov kai Swaipesty Suyfj éxatépov, douctod Te Kol vontod, dpeV,
o Mavkov, tva puf nuic rollariaciov Adyov duminon §j 8cmv ol mapeinlvddoteg (534a).

Here, I agree with Richard Foley, who supposes that, “Plato is surreptitiously hinting that the
serious reader should analyze what these further difficulties might be.”!? In an attempt to turn his
readers’ heads away from the shadows dancing on the cave wall, Plato asks us to analyze the
math and the imagery of his simile in order to tease out its full meaning. Although Plato didn’t
have the vocabulary available to him to describe his fractal fully, I believe he offers a clear
enough picture to follow his thinking. In this fractal filled with shadows Plato encodes a deft and

nuanced epistemology where one can reach beyond a shadow of doubt and grasp knowledge.

12 Foley 2008, 18.
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